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Abstract

The analytical solution for the problem of transient thermal conduction with solid body movement is developed for

an orthotropic parallelepiped. Transformations are used to eliminate the flow terms and the orthotropic dependence.

The solution uses two types of Green’s functions: one coming from the Laplace transform method and the other from

the method of separation of variables. The solution method is powerful because it incorporates internal verification

of the numerical results by varying the partition time between the short and long components. An example is given for a

multi-dimensional case involving both prescribed heat flux and temperature boundary conditions.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The primary motivation of this paper is for the ver-

ification of numerical heat transfer codes. This is

accomplished by development of a framework for exact

solutions for multi-dimensional heat conduction in

moving solids; this approach is in contrast to that of

generating manufactured solutions [1–3]. One physical

application for the transient heat conduction problem

involving slug flow in a parallelepiped is in the steel

industry where moving solids have transient tempera-

ture distributions. Another field for application of this

problem is in the study of flow and conduction in porous

media.

Methods for solving the heat conduction equation

for solid body flow, using a transformation, are given in

both [4] and [5]. Ref. [5] also provides a general method

for solving transient heat conduction problems using

Green’s functions, including those addressing solid body
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motion. The use of these methods for application in

verification work is discussed in [6,7]. Solutions for

problems involving solid body motion are given in

[8], with the emphasis on transient boundary conditions

of the first kind (that is, prescribed temperatures). The

present paper gives a much more complete derivation

of the transformed heat conduction equation, even

including orthotropic materials. The present paper also

extends this analysis to cases for which there is a

boundary condition of the second (prescribed heat flux

or Neumann) kind or third (convective condition or

Robin) kind on a parallelepiped surface with a boundary

condition of the first kind on the opposite face. Refer-

ences for exact solutions for layered slabs are [9–12].

For boundary conditions of second and third kinds,

movement of the solid results in changes in the bound-

ary conditions which, in turn, may introduce some

unexpected difficulties. One of the difficulties is the

transformation of a boundary condition of the second

kind to that of the third kind. In our verification studies,

two different types of Green’s functions are used, one

coming from the Laplace transform method and the

other from the separation of variables method. Both are

used in the solution of a given multi-dimensional heat

conduction problem. In general the transformation of
ed.
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Nomenclature

B Biot-like dimensionless number

E transforming function, Eq. (3a,b)

Fo Fourier number (at=L2)

Fop Fourier number corresponding to the par-

tition cotime (atp=L2)

GS( ) short cotime Green’s function

GL( ) long cotime Green’s function

heff effective heat transfer coefficient, W/m2 �C
IG( ) Green’s function integrated over x0i,

i ¼ 1; 2; 3
k transformed thermal conductivity, W/m �C
ki thermal conductivity in the ith direction,

i ¼ 1; 2; 3, W/m �C
K( ) component of short cotime Green’s func-

tion, m�1

L1, L2, L3 overall length of the body in the x, y, and z
directions, respectively, m

M constant in the heat conduction equation,

Eq. (1), s�1

Pi Peclet-like dimensionless number (UiLi=a),
i ¼ 1; 2; 3

q heat flux, W/m2

qs prescribed heat flux at a boundary, W/m2

R0 dimensionless number, ðPe=2Þ2 � b2
0

T temperature, �C
Ts prescribed surface temperature, �C
Ui uniform velocity in the xi direction,

i ¼ 1; 2; 3, m/s

u cotime (t � s), s
xi spatial variable in the ith direction,

i ¼ 1; 2; 3, m

Greek symbols

a transformed thermal diffusivity, m2/s

ai thermal diffusivity in the ith direction,

i ¼ 1; 2; 3, m2/s

b eigenvalue

jj thermal conductivity defined by Eq. (18),

W/m �C
w Transformed temperature variable, Eq. (2)
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boundary conditions does not introduce fundamental

problems in the solution using Green’s functions (GFs)

based on the Laplace transform. However, for the sep-

aration-of-variables based GFs, all the eigenvalues (for a

given direction and boundary conditions of the second

and third kinds) are changed for solid body flow in that

direction. An anomalous aspect is the introduction of a

special eigenvalue which depends upon the value of the

Peclet number.

A word of clarification and caution needs to be

introduced for this ‘‘solid body flow’’. For flow only in

the direction of the boundary conditions of the first

kind, no difficulty exists in the physical understanding of

the problem; the problem is the one associated with

transient slug flow with conduction in the flow direction.

For the standard boundary conditions of the second and

third kinds in the direction of the flow, the physical

picture may not be obvious. In that respect, the solu-

tions given herein come closer to a manufactured solu-

tion and are used for verification purposes. Furthermore

these solutions have potential for heat transfer with flow

in a porous solid but the applications for this are left to

others [13, see Example 2].

In the solution of multi-dimensional transient (and

actually steady state, as well) heat conduction prob-

lems, it is shown in [5–7] that the Green’s function time

partitioning method is very accurate and efficient; this

method uses the two complementary GF forms men-

tioned above. Either form can be used but using just
one can be computationally very inefficient. Further-

more, the accuracy may be adversely affected if just one

form is used. Hence both are used and joined at a

partition time.

Another extremely important point regarding the

use of the two forms of the Green’s function is that

verification is embedded in the solution method itself.

The time at which the short time solution is terminated

and the long time solution starts is called the partition

time. The partition time can be varied over a range of

dimensionless times and still give excellent agreement

(to 10 significant figures, for example) in the numerical

values for the temperature and heat fluxes. This is

an extremely useful and powerful aspect of these

solutions. Numerical methods, such as finite differences

or control volumes, do not have an analogous feature.

Selecting the partition time is discussed below and in

[5–7].

An outline of the paper is now given. First, the

general describing equation is given for 3D Cartesian

coordinates in an orthotropic body. A transformation

removes the solid body flow terms and a term propor-

tional to the temperature. The boundary conditions are

also transformed. This is followed by the solution of the

equation for the transformed variable and implications

of the product of the 1D Green’s functions for a par-

allelepiped. Next the 1D GFs are given for boundary

conditions of second or third kinds at the heated surface

with an isothermal condition (first kind) at the other
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surface. Another transformation eliminates the ortho-

tropic terms. Finally results, discussion and examples

are given.
2. Problem and transformation equations

The transient heat conduction equation for an ortho-

tropic body with uniform and temperature-independent

thermal properties, volume energy generation, uniform

velocities in the three directions and a term proportional

to the temperature is

X3
i¼1

ai
o2T
ox2i

þ g
C
þ MT ¼ oT

ot
þ
X3
i¼1

Ui
oT
oxi

; 0 < xi < Li

ð1Þ

The coordinates are x1 ¼ x, x2 ¼ y, x3 ¼ z and the cor-

responding widths L1 ¼ L, L2 ¼ W , and L3 ¼ H . The MT
term can represent a ‘‘fin’’ effect for 1D and 2D analyses,

a weak chemical reaction or blood flow in some bio-

logical problems. The ai ¼ ki=C values are the thermal

diffusivities in the x, y and z directions, respectively. The
Ui are the velocities in the three different directions,

U1 ¼ U , U2 ¼ V , U3 ¼ W ; they describe solid body

motion and do not change with time. The g is the vol-

umetric energy generation term and C is the uniform

volumetric heat capacity.

We now wish to express Eq. (1) in a form which

eliminates the UioT=oxi and MT terms. A derivation is

given [5] but it does not treat the orthotropic case; fur-

thermore the below derivative is more direct. Let the

temperature be related through Eðx1; x2; x3; tÞ to the new

variable w by

T ðx1; x2; x3; tÞ ¼ Eðx1; x2; x3; tÞwðx1; x2; x3; tÞ ð2Þ

Eðx1; x2; x3; tÞ ¼ eMt
Y3
i¼1

Exiðxi; tÞ;

Exiðxi; tÞ ¼ e
Uixi
2ai

�
U2
i
t

4ai ð3a; bÞ

The following derivatives are needed:

oT
oxi

¼ E
ow
oxi

þ oE
oxi

w ¼ E
ow
oxi

�
þ Ui

2ai
w

�
ð4aÞ

o2T
ox2i

¼ E
o2w
ox2i

þ 2
oE
oxi

ow
oxi

þ o2E
ox2i

w

¼ E
o2w
ox2i

"
þ Ui

ai

ow
oxi

þ Ui

2ai

� �2

w

#
ð4bÞ

oT
ot

¼ E
ow
ot

þ oE
ot

w ¼ E
ow
ot

"
þ Mw � w

X3
i¼1

U 2
i

4ai

#
ð4cÞ
Introducing Eqs. (4) into Eq. (1) gives

E
X3
i¼1

ai
o2w
ox2i

�
þ Ui

ow
oxi

þ U 2
i

4ai
w

�
þ g

C
þ EMw

¼ E
ow
ot

"
þ Mw �

X3
i¼1

U 2
i

4ai
w þ

X3
i¼1

Ui
ow
oxi

�
þ U 2

i

2ai
w

�#

¼ E
ow
ot

"
þ Mw þ

X3
i¼1

Ui
ow
oxi

�
þ U 2

i

4ai
w

�#
ð5Þ

Further simplifying this equation gives the desired result

of

X3
i¼1

ai
o2w
ox2i

þ g
EC

¼ ow
ot

;

1

E
¼ E�1 ¼ e�Mt

Y3
i¼1

e
�Uixi

2ai
þ

U2
i
t

4ai ð6a; bÞ

This equation is further simplified to remove the

orthotropic terms starting at Eq. (20a).

The initial and boundary conditions in terms of

temperature are now considered. The initial condition is

T ðx1; x2; x3; 0Þ ¼ F ðx1; x2; x3Þ ð7Þ

and the standard boundary conditions of the first, sec-

ond and third kinds at x1 ¼ 0 and L1 are

T ð0; x2; x3; tÞ ¼ f1ðx2; x3; tÞ;
T ðL1; x2; x3; tÞ ¼ f2ðx2; x3; tÞ ð8a; bÞ

� k1
oT
ox1

ð0; x2; x3; tÞ ¼ f1ðx2; x3; tÞ;

k1
oT
ox1

ðL1; x2; x3; tÞ ¼ f2ðx2; x3; tÞ ð9a; bÞ

� k1
oT
ox1

ð0; x2; x3; tÞ ¼ f1ðx2; x3; tÞ � h1T ð0; x2; x3; tÞ

k1
oT
ox1

ðL1; x2; x3; tÞ ¼ f2ðx2; x3; tÞ � h2T ðL1; x2; x3; tÞ

ð10a; bÞ

The source terms in Eqs. (8a,b) are temperatures; in Eqs.

(9a,b) are heat fluxes; and in Eqs. (10a,b) are usually the

heat transfer coefficient times the ambient temperature.

(Notice that the flow is not explicitly included in the

boundary conditions of the second and third kinds.

Without this explicit inclusion, the problem formulation

moves closer to that of manufactured solutions [1].) To

make the notation more compact, let the source term be

denoted fiðri; tÞ where i goes from 1 to 6 for a parallel-

epiped and the ri values are

r ¼ x1; x2; x3 r1 ¼ 0; x2; x3
r2 ¼ L1; x2; x3 r3 ¼ x1; 0; x3
r4 ¼ x1; L2; x3 r5 ¼ x1; x2; 0 r6 ¼ x1; x2; L3 ð11Þ

Now the initial and boundary conditions for w can be

written using Eq. (2) as
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wðr; 0Þ ¼ E�1ðr; 0ÞF ðrÞ initial condition ð12Þ

wðrj; tÞ ¼ E�1ðrj; tÞfjðrj; tÞ first kind b:c: ð13Þ

jj
ow
onj

ðrj; tÞ ¼ E�1ðrj; tÞfjðrj; tÞ

þ CUj

2
wðrj; tÞ second kind ð14Þ

jj
ow
onj

ðrj; tÞ ¼ E�1ðrj; tÞfjðrj; tÞ � hjwðrj; tÞ þ
CUj

2
wðrj; tÞ

¼ E�1ðrj; tÞfjðrj; tÞ

� hj

�
� CUj

2

�
wðrj; tÞ; third kind ð15Þ

The rj values are those given in Eq. (11) and the fj and hj

correspond to the same surfaces. However, the nj, Uj

and jj variables are

n1 ¼ �x; n2 ¼ x; n3 ¼ �y; n4 ¼ y;

n5 ¼ �z; n6 ¼ z ð16Þ

Uj¼1 ¼ Uj¼2 ¼ U ; Uj¼3 ¼ Uj¼4 ¼ V ;

Uj¼5 ¼ Uj¼6 ¼ W ð17Þ

j1 ¼ j2 ¼ k1; j3 ¼ j4 ¼ k2; j5 ¼ j6 ¼ k3 ð18Þ

Notice that the boundary condition of the third kind,

given by Eq. (15), suggests that we can write

hj;eff ¼ hj �
CUj

2
; j ¼ 1; 2; 3 ð19aÞ

It is important to note that the boundary condition of

the second kind on T , Eq. (9), goes to the third kind in

terms of w. This is shown by Eq. (14) which might be

considered to have an ‘‘effective heat transfer coeffi-

cient’’ of �CUj=2; note that this coefficient can be either

negative or positive because the flow velocity can be

positive (positive xi direction) or negative (negative xi

direction). Because Eq. (19a) can produce a negative

value, it may not be the best interpretation to state that

Eq. (19a) yields an effective heat transfer coefficient. It is

convenient to write Eq. (19a) in the dimensionless form

Bj;eff �
hj;effLj

jj
¼ Bj �

1

2
Pj; Bj �

hjLj

jj
; Pj �

UjLj

jj=C

ð19bÞ

We have purposefully not labeled these dimensionless

quantities Bi and Pe because they are not the usual Biot

and Peclet numbers for several reasons including the

possible negative values allowed in Eq. (19b).

At this point another transformation is introduced to

remove the orthotropic nature of Eq. (1); for three-

dimensional cases the transformed thermal conductivity

and diffusivity are defined by

k � ðk1k2k3Þ1=3; a � ða1a2a3Þ1=3 ð20aÞ
Let the transformed coordinates be defined by

x�i � xi
k
ki

� �1=2

; i ¼ 1; 2; 3 ð20bÞ

Then the heat conduction equation for w given by

Eq. (6) can be re-written as

a
X3
i¼1

o2w

oðx�i Þ
2
þ g

EC
¼ ow

ot
ð21aÞ

This is the final transformed heat conduction equation.

The initial condition and boundary condition of the first

kind, given respectively by Eqs. (12) and (13), are un-

changed by these transformations. Boundary condition

of the second kind, Eq. (14), can now be written as

k
ow
on�j

ðr�j ; tÞ ¼ E�1ðr�j ; tÞf �
j ðr�j ; tÞ þ

CU �
j

2
wðr�j ; tÞ ð21bÞ

where for j ¼ 1; 2; . . . ; 6

n�j ¼ nj
k
jj

� �1=2

; U �
j ¼ Uj

k
jj

� �1=2

;

f �
j ¼ fj

k
jj

� �1=2

; h�j ¼ hj
k
jj

� �1=2

ð21cÞ

The boundary condition of the third kind, Eq. (15), is

similarly changed. The ‘‘Biot’’ and ‘‘Peclet’’ numbers

given in Eq. (19b) can also be written as

B�
j ¼

h�j L
�
j

k
; P �

j ¼
U �

j L
�
j

k=C
¼

U �
j L

�
j

a
ð21dÞ

For convenience, the asterisk superscript is omitted

below.
3. Green’s function solution equation for the transformed

variable, w

The solution for w in terms of Green’s functions [5]

is given by

wðr; tÞ ¼ wi:c:ðr; tÞ þ wgðr; tÞ þ wb:c:ðr; tÞ ð22Þ

which has terms for the initial condition, volume energy

generation and boundary conditions, respectively. The

initial condition term [5] becomes

wi:c:ðr; tÞ ¼
Z L1

x1¼0

Z L2

x2¼0

Z L3

x3¼0

	 Gwðr; t; r0; 0ÞE�1ðr0; 0ÞF ðr0Þdx1 d2 dx3 ð23Þ

The Green’s function Gwðr; t; r0; sÞ ¼ Gwðx1; x2; x3; t;
x01; x

0
2; x

0
3; sÞ is discussed further below. The volumetric

energy generation term is
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wgðr; tÞ ¼
1

C

Z t

s¼0

Z L1

x1¼0

Z L2

x2¼0

Z L3

x3¼0

Gwðr; t; r0; sÞ

	 E�1ðr0; sÞgðr0; sÞdx1 dx2 dx3 ds ð24Þ

The boundary condition term is

wb:c:ðr; tÞ ¼
1

C

Z t

s¼0

X
second;third

kinds b:c:

Z
sj

Gwðr; t; r0j; sÞ

	 E�1ðr0j; sÞfjðr0j; sÞdsj ds

þ
Z t

s¼0

X
first kind

b:c:

Z
sj

ji

C

 
� oGw

on0j
ðr; t; r0j; sÞ

!

	 E�1ðr0j; sÞfjðr0j; sÞdsj ds ð25Þ

where the summations on j go from 1 to 6 for the sur-

faces of a parallelepiped but the first summation includes

only the boundary conditions of the second and third

kinds and second summation includes just the first kind

boundary conditions.

The Green’s functions for w are those for Eq. (21a)

with the homogeneous boundary conditions given by

those selected from Eqs. (13)–(15).
4. Product relation for the Green’s functions in a

homogeneous parallelepiped

The Green’s functions for w in an isotropic parallel-

epiped can be readily found from the 1D GFs using the

product relation of [5, pp. 98–103]

Gw:XIJYKLZMN ðx; y; z; t; x0; y0; z0; sÞ
¼ Gw:XIJ ðx; t; x0; sÞGw:YKLðy; t; y0; sÞGw:ZMN ðz; t; z0; sÞ

ð26Þ

For clarity we have used the notation of XIJ instead of

X1IJ and so on. The notation in Eq. (26) denotes the

boundary conditions on the surfaces of the parallelepi-

ped. For example, XIJ denotes the x-direction boundary

conditions of the Ith kind at x ¼ 0 and the J th kind at

x ¼ L1; I and J can go from 1 for prescribed temperature

(boundary condition of the first kind), 2 for prescribed

heat flux (second kind) and 3 for prescribed ambient

temperature (third kind). Similarly YKL is for the y-
direction with boundary conditions of Kth kind at y ¼ 0

and Lth kind at y ¼ L2. Also ZMN is similar.

The boundary conditions of the first kind on opposite

boundaries are the simplest because the transformation

Eq. (3a) does not change the boundary conditions. As

mentioned in Section 1, two expressions are available for

the Green’s functions [5, p. 481, 482]. For the X11 case

(and similarly for the Y 11 and Z11 cases) the ‘‘short’’

and ‘‘long’’ time expressions are
GS
w:X11ðx1; t; x01; sÞ ¼

Xn¼1

n¼�1
ðKð2nL1 þ x1 � x01; t � sÞ

� Kð2nL1 þ x1 þ x01; t � sÞÞ ð27aÞ

GL
w:X11ðx1; t; x01; sÞ ¼

2

L1

X1
m¼1

e
�ðmpÞ2aðt�sÞ

L2
1

	 sin mp
x1
L1

� �
sin mp

x01
L1

� �
ð27bÞ

where

Kðw; hÞ � 1ffiffiffiffiffiffiffiffiffiffi
4pah

p e�
w2
4ah ð27cÞ

Eq. (27a) is for the short time form and has an ‘‘S’’

superscript on the G; this form comes from the Laplace

transform; Eq. (27b) is the long time form with a ‘‘L’’

superscript and comes from separation of variables

solution method. The words ‘‘short time’’ and ‘‘long

time’’ are not particularly apt because actually what

we are describing is really short and long values of

u � t � s ð27dÞ

This quantity could be called a ‘‘convolution time’’ but

for brevity, we coin the word ‘‘cotime’’. To be more pre-

cise, the new word ‘‘cotime’’ is used below to describe u.
For the same values of x1, x01, t and s, Eqs. (27a) and

(27b) give the same numerical answer. However, the

required number of terms to get desired accuracy can be

quite different in the two expressions. For small values

of dimensionless cotime au=L2
1 such as less than 0.05

only a few terms are needed in Eq. (27a) and only a few

are needed in Eq. (27b) for au=L2
1 greater than 0.05.

(What is meant by ‘‘few’’ is made clear below.) Con-

versely, for large values of au=L2
1 such as 1, many terms

are needed using Eq. (27a) and the same is true for Eq.

(27b) for that dimensionless group going to zero. In the

time-partitioning method both of these forms are used.

Each is used in its most efficient region, resulting in only

a few terms being needed in each summation. This is

true for 1D, 2D and 3D cases, with and without solid

body flow.
5. Product variations in initial conditions, volumetric

energy generation and boundary conditions

Since the 3D Green’s function for the present prob-

lem can be formed by a product of the 1D GFs, the

Green’s function solution equation can be written in a

relatively simple manner for product forms of initial

conditions, volumetric energy generation and boundary

conditions. Due to space limitations this topic is ex-

plored briefly. Let the initial condition be given by a

product of a function of x1 by function of x2 by a

function of x3
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F ðx1; x2; x3Þ ¼ F0F1ðx1ÞF2ðx2ÞF3ðx3Þ ð28aÞ

where F0 is a scaling constant. Using Eq. (23) the result

for the wi:c: function is

wi:c:ðx1; x2; x3; tÞ ¼ F0

Y3
i¼1

Z Li

x0i¼0

E�1
i ðx0i; 0Þ

	 Gw:ðXIJÞiðxi; t; x0i; 0ÞFiðx0iÞdx0i ð28bÞ

For the volumetric generation term, the result is similar

with now a product on space and time; the integration is

over 3D space and time as well. For a boundary con-

dition at x1 ¼ 0 of the second kind, that is, a q of the

form

f1ðx2; x3; tÞ ¼ f10f12ðx2Þf13ðx3ÞftðtÞ ð29aÞ

and the temperature equal to zero at x1 ¼ L1, the X21

Green’s function is needed. For the x1 ¼ 0 surface being

the only nonhomogeneous one, Eq. (25) yields

wb:c:ðx1x2; x3; tÞ ¼
f10
C

Z t

u¼0

E�1
1 ð0; t � uÞGw:X21ðx; 0; uÞ

	
Y3
i¼2

IGw:ðXIJÞiðxi; uÞdu ð29bÞ

IGw:ðXIJÞiðxi;uÞ�
Z Li

x0i¼0

E�1
i ðx0i;t�uÞGw:ðXIJÞiðxi;x0i;uÞf1iðx0iÞdx0i

ð29cÞ
5.1. Green’s function for w for the X21 and X31 cases

The w Green’s functions for boundary conditions are

changed for solid body flow. We noted above that the

boundary condition of the second kind on T goes to the

third kind on w. The resulting w short cotime GF (re-

stricted to au=L2
1 6 0:05) is [6]

GS
w:X31ðx; x0; uÞ
� Kðx � x0; uÞ þ Kðx þ x0; uÞ � Kð2L1 � x � x0; uÞ

� Kð2L1 � x þ x0; uÞ � B1;eff

L1

½H0ðx þ x0; uÞ

� H0ð2L1 � x þ x0; uÞ� ð30aÞ

where the function H0ðz; uÞ is defined as

H0ðz; uÞ � e
B1;eff

z
L1
þB2

1;eff
au
L2
1 erfc

z
2Li

au
L2
1

� ��1=2
 

þ B1;eff

au
L2
1

� �1=2!

ð30bÞ

The GF for the X21 case for w is the X31 Green’s

function with the heat transfer coefficient, h, replaced by

the effective one given by Eq. (19a) with hj ¼ 0; this then

gives for the w : X21 case with B1;eff ¼ �P1=2.
The long cotime form of GF for the X31 case (and

also the X21 case) is
Gw:X31ðx; x0; uÞ

¼ e
b2
0
a u
L2
1
X0ðxÞX0ðx0Þ

N0

þ
X1
m¼1

e
�b2m

au
L2
1
XmðxÞXmðx0Þ

Nm

X0ðxÞ ¼ sinh b0

L1 � x
L1

� �
;

XmðxÞ ¼ sin bm
L1 � x

L1

� �
; m ¼ 1; 2; . . . ð31aÞ

N0 ¼
L1

2

�B1;eff � R2
0

R2
0

; Nm ¼ L1

2

B1;eff þ R2
m

R2
m

R2
0 ¼ B2

1;eff � b2
0; R2

m ¼ B2
1;eff þ b2

m

ð31bÞ

The summation part of Eq. (31a) is obtained directly

from [5, p. 502] or from [6]. The eigencondition for the

bm eigenvalues are obtained from

tanðbmÞ ¼ �bm=B1;eff ð31cÞ

The first part of Eq. (31a), which we call the zeroth term,

was difficult to find. A method of determining this term

for the w : X21 case is now given.

The one-dimensional equation for finding the

Green’s function Gw is

o2Gw

ox2
¼ 1

a
oGw

ot
; 0 < x < L1; t > 0 ð32aÞ

For the X21 case the homogeneous boundary conditions

are (see Eqs. (13) and (14))

�k
oGw

ox
ð0; tÞ ¼ UC

2
Gwð0; tÞ; GwðL1; tÞ ¼ 0 ð32bÞ

The usual procedure is to let

Gwðx; tÞ ¼ X ðxÞHðtÞ ð32cÞ

Introducing Eq. (32c) into Eq. (32a) gives

X
00 ðxÞ

X ðxÞ ¼ 1

a
H0ðtÞ
HðtÞ ¼ b

L1

� �2

ð33Þ

Unlike the usual procedure, a positive constant is chosen

in Eq. (33). That is a key for finding the zeroth eigen-

value. The solution for X ðxÞ is

X ðxÞ ¼ C1 sinh b
L1 � x

L1

� �
þ C2 cosh b

L1 � x
L1

� �
ð34Þ

The boundary conditions on X ðxÞ are obtained using

Eq. (32b) to get

� oX
ox

ð0Þ ¼ U1

2a
X ð0Þ; X ðL1Þ ¼ 0 ð35Þ

Using the condition at L1 in Eq. (34) gives C2 ¼ 0. Using

the first condition of Eq. (35) yields an eigencondition

containing a hyperbolic tangent (a surprising result),

tanhðb0Þ ¼
2

Pe1
b0; P1 ¼

U1L1

a
ð36a; bÞ
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which is similar to Eq. (31c). Notice that the Peclet

number can be positive and negative. (For the w : X31

case, P1=2 is replaced by the negative of B1;eff .) (A re-

viewer pointed out that Eq. (36) can be found from

Eq. (31c) using an imaginary b0 in Eq. (31c).)

Solving the HðtÞ equation in Eq. (33) and combining

with (32b) and (34) gives

Gw0ðx; tÞ ¼ A0e
b2
0

at
L2
1 sinh b0

L1 � x
L1

� �

¼ A0e
b2
0

at
L2
1X0ðxÞ ð37Þ

It can be shown that the eigenfunction in this equation

and the ones in the second part of Eq. (31a) (namely,

sin½bmðL1 � xÞ=L1�Þ are orthogonal over the region

0 < x < L1. The Green’s function component corre-

sponding to Eq. (37) can be found in several ways. One

is to consider the initial temperature distribution of

dðx0Þ with homogeneous boundary conditions and then

to solve for A0. After multiplying Eq. (37) by

sinh½b0ðL1 � xÞ=L1� and integrating over x givesZ L1

x¼0

sinh b0

L1 � x
L1

� �
dðx0Þdx

¼ sinh b0

L1 � x0

L1

� �
¼ A0N0 ð38aÞ

N0 ¼
Z L1

x¼0

sinh b0

L1 � x
L1

� �
sinh b0

L1 � x
L1

� �
dx

¼ L1

2

�
� 1þ sinhð2b0Þ

2b0

�
ð38bÞ

This equation then gives

A0 ¼
1

N0

sinh b0

L1 � x0

L

� �
¼ X0ðx0Þ

N0

ð39aÞ

Using this expression in Eq. (37) then gives the zeroth

term in the Green’s function in Eq. (31b) and completes

this derivation. Using Eq. (36) and a trigonometric

identity it can be shown for the w : X21 case that

N0;w:X21 ¼
L
2

P1 � R2
0

R2
0

ð39bÞ

which is used only for P1 greater than two. See the below

discussion.
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Fig. 1. Finding eigenvalues for the tanðbmÞ ¼ �bm=B1;eff and

tanhðb0Þ ¼ 2b0=P eigenconditions.
6. Eigenvalues for w : X21 and w : X31 cases

Special attention is needed for the determination of

the eigenvalues for the w : X21 and w : X31 cases. Ei-

genconditions for the w : X21 case are given by Eqs.

(36a) and (31c), where the B1 given by Eq. (19b) reduces

to �P1=2. See Fig. 1 for a plot of the left sides of Eq.

(36a) and Eq. (31c), tanhðbÞ and tanðbÞ, respectively.
The right sides of Eqs. (36a) and (31c) form straight lines

from the origin with a slope proportional to 2=P . The
tangent function keeps repeating while the hyperbolic

tangent starts at zero and increases to the value of unity.

In the common use of Eq. (31c) to find the eigenvalues,

the Biot number is positive and the right side of this

equation is negative. See the P ¼ �4 curve in Fig. 1

which corresponds to B ¼ 2 for U ¼ 0. The first eigen-

value is the intersection of the first tanðbÞ curve and the

P ¼ �4 line, giving a known value of about 2.29 [4, p.

655]; see the ‘‘X’’ mark in Fig. 1. However, for P ¼ 4 (a

positive velocity in the x-direction) the intersection of the

�b=B1;eff ¼ b=2 curve and the tanðbÞ curve is where

tanðbÞ is positive; see the value of b1 � 4:3 indicated by a

circle in Fig. 1. For P less than 2 in value, the straight

lines shown in Fig. 1 only intersect the hyperbolic tan-

gent curve at b0 ¼ 0. Hence the zeroth order term is not

present for �16 P 6 2. The P ¼ 4 line in Fig. 1 inter-

sects the hyperbolic tangent about 1.9; see b0 indicated

by a circle. For P greater than 2 the zeroth term in Eq.

(31a) makes a contribution, possibly the dominant one.

Plots of some eigenvalues for the w : X21 case are

given in Fig. 2 as a function of the Peclet number. (The

abscissa could also be �2Bþ P for the w : X31 case.)

The eigenvalues for �16 P 6 2 are commonly tabu-

lated [4,5,14] but those above P ¼ 2 are not. The ei-

genvalues for P > 2 are surprising. The eigenvalue

labeled b1 (which comes from the tangent eigencondi-

tion) does not exist above P ¼ 2. Instead b0, coming

from the hyperbolic condition, appears. Then the biþ1

curves on the left go to the bi curves on the right for

i ¼ 1; 2; . . . The curves could be labeled such that the

labeling does not change at P ¼ 2 but that poses a

problem because the b0 numerical values can exceed b1

if P is sufficiently large.
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7. Evaluation of Green’s functions near the partition

cotime

One way to validate the Green’s functions expres-

sions for the w : X21 case is to evaluate both of them at

or below the partition cotime of Fo ¼ au=L2
1 ¼ 0:05 at

a given point. To get the long cotime values requires

eigenvalues be calculated. For P ¼ 4, the values are

b0 � 1:915, b1 � 4:275, b2 � 7:597 and then roughly

ð2m� 1Þp=2. For simplicity assume that the eigenvalues

are temporarily approximated by mp; then to make last

exponential term in the infinite series in Eq. (31a) less

than 1.0E)10, let

e�m2
maxp

2Fo ¼ 1:0E� 10; mmax �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
23=ðp2FoÞ

p
� 1:5=

ffiffiffiffiffi
Fo

p

ð40Þ

since expð�23:025Þ ¼ 1:001E� 10. Using the values of

Fo ¼ 0:04, 0.05 and 0.06 gives the maximum required

number of terms of 7.5, 6.7 and 6.12, which round to 7, 6

and 6, respectively. The number of terms about six is

very acceptable. In contrast, if the cotime Fo value is

allowed to approach zero, Eq. (40) indicates that the

number of terms increases without limit. Fortunately

using the time partition method, the short cotime GF

equation, Eq. (30a,b) is efficiently used for the smaller

values of Fo.
8. Example

An example for the temperature distribution in a

parallelepiped is given for flow only in the x-direction
and the only nonhomogeneous boundary condition is a

constant heat flux at x ¼ 0. The initial temperature is
zero. The temperature at x1 ¼ L1 is zero. At this point,

the boundary conditions at the y- and z-surfaces are

homogenous and can be of the first, second or third

kinds. The heat flux given by Eq. (29a) is a constant so

that each function is equal to unity and f10 ¼ q0. Using

the notation of [5], this 3D problem can be described by

XU21B10 YMNB00 ZKLB00T0, where M , N , K and L can

each be 1, 2 or 3. Using Eqs. (2), (3) and (29b) the

temperature is given by

T ðx; y; z; tÞ ¼ e
Ux
2a�

U2 t
4a wb:c:ðx; y; z; tÞ

wb:c:ðx; y; z; tÞ

¼ q0
C

Z t

s¼0

Gw:X21ðx; 0; uÞe
U2ðt�uÞ

4a IGYMN ðy; uÞIGZKLðz; uÞdu

ð41Þ

where IG denotes a spatial integral of a Green’s function

such as

IGYMN ðy; uÞ ¼
Z L2

y0¼0

GYMN ðy; y0; uÞdy0 ð42Þ

For multi-dimensional analytical heat conduction

problems we have found that the time partitioning

method of solution is very powerful for nonhomoge-

neous boundary conditions. See [5–7]. In this method,

the integrals such as in Eq. (41) are broken into two

parts so that the short and long cotime type Green’s

functions can be used where each is the most efficient.

Then Eq. (41) is written as

wb:c:ðx; y; z; tÞ

¼ q0
C
e

U2 t
4a

Z tp

u¼0

GS
w:X21ðx; 0; uÞe�

U2u
4a IGS

YMN ðy; uÞ

	 IGS
ZKLðz; uÞduþ

q0
C
e

U2 t
4a

Z t

u¼tp

GL
w:X21ðx; 0; uÞe�

U2u
4a

	 IGL
YMN ðy; uÞIG

L
ZKLðz; uÞdu ð43Þ

For simplicity at this point in this example, consider the

problem where the boundary conditions of the second

kind are at y ¼ 0 and L2 and z ¼ 0 and L3; in this case

the integrals over the surface like Eq. (42) are unity and

the problem becomes one-dimensional and Eq. (43)

becomes

wb:c:ðx; tÞ ¼
q0
C
e

U2 t
4a

Z tp

u¼0

GS
w:X21ðx; 0; uÞe�

U2u
4a du

"

þ
Z t

u¼tp

GL
w:X21ðx; 0; uÞe�

U2u
4a du

#

¼ wS
b:c:ðx; tpÞ þ wL

b:c:ðx; tp; tÞ ð44Þ

Both the long and short cotime solutions are used in

Eq. (44).
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The first integral in Eq. (44) is evaluated using Eq.

(30) at x0 ¼ 0 with Beff ¼ �UL1=ð2aÞ ¼ �P=2. This gives
the short cotime GF,

GS
w:X21ðx; 00; uÞ � 2Kðx; uÞ � 2Kð2L1 � x; uÞ

þ P
2L1

½H0ðx; uÞ � H0ð2L1 � x; uÞ� ð45Þ

This expression can be written as two parts, one for x
and the other for 2L1 � x; let z be either of these values.

A typical integral for a component of the short cotime

GF is thenZ tp

u¼0

1ffiffiffiffiffiffiffiffi
pau

p e�
z2
4au�

U2u
4a

(

� ð�P=2Þ
L1

e
�P

2
z

L1
þ P

2ð Þ
2 au
L2
1

�U2
u
4a
erfc

z
2L1

au
L2
1

� ��1=2
 

þ
�
� P

2

�
au
L2
1

� �1=2!)
du

¼ L1

a

Z Fop

w¼0

1ffiffiffiffiffiffi
pw

p e�a2w�b2
w

�
� ae2aberfc a

ffiffiffiffi
w

p�
þ bffiffiffiffi

w
p

��
dw

¼ L1

a
Iw21ða; b; FopÞ ð46aÞ

where Appendix A is used and

a ¼ � P
2
; b ¼ z

2L1

; w ¼ au
L2
1

; Fo ¼ at
L2
1

ð46bÞ

Then the short cotime component in Eq. (44) is used

with Eqs. (3) and (46a) to get the short cotime temper-

ature component for the XU21B10T0 problem,

T Sðx; tpÞ ¼
q0L1

k
e

P
2

x
L1 Iw21

��
� P

2
;
x
L1

; Fop

�

� Iw21

�
� P

2
;
2L1 � x

L1

; Fop

��
ð47Þ

Next consider the long cotime component of the tem-

perature. Using Eq. (31a) and the long cotime compo-

nent of Eq. (44) gives

T Lðx; tp; tÞ ¼ e
Ux
2a�

U2 t
4a wL

b:c:ðx; tp; tÞ
¼ T L

c:t:ðx; tÞ � T L
c:t:ðx; tpÞ ð48aÞ

where

T L
c:t:ðx; uÞ ¼ � q0L1

k
e

P
2

x
L1 e

�R2
0

au
L2
1
X0ðxÞX0ð0Þ
L1N0R2

0

"

þ
X1
m¼1

e
�R2

m
au
L2
1
XmðxÞXmð0Þ
L1NmR2

m

#
ð48bÞ

and the eigenfunctions X0 and Xm are given in Eq. (31a).

Because expressions similar to the right side of Eq. (48b)

occur frequently in separation of variable GF solutions,

it is proposed that the right side of Eq. (48b) be termed
the ‘‘complementary transient’’ and denoted by the

subscripts of ‘‘c.t. ’’ Again note that the zeroth term is

present only for P > 2 for the w : X21 problem.

The temperature using the notation in Eqs. (47) and

(48a) gives the temperature at time t as

T ðx; tÞ ¼ T Sðx; tpÞ þ T Lðx; tp; tÞ
¼ T Sðx; tpÞ þ T L

c:t:ðx; tÞ � T L
c:t:ðx; tpÞ ð49Þ

Notice that the steady state solution is given simply by

T ðxÞ ¼ T ðx;1Þ ¼ T Sðx; tpÞ � T L
c:t:ðx; tpÞ ð50Þ

In words this equation states that the steady state tem-

perature is the short cotime solution minus the com-

plementary transient solution, both evaluated at the

same partition cotime. This result applies for two- and

three-dimensional problems as well as for 1D. Eqs. (49)

and (50) contain implicitly the possibility of internal

verification of the solution, which is briefly discussed

next.
9. Tables and numerical values

Table 1 shows results for P ¼ 4 using several different

dimensional partition times for the above steady state

part of the above problem, which is denoted XU21B10.
The partition time method is not needed for this case

since the steady state is simply [8]

T ðxÞ=ðq0L=kÞ ¼
1

P
eP
�

� eP
x
L
�

ð51Þ

However, this example is convenient to demonstrate the

power of the time partitioning procedure. Some multi-

dimensional examples for non-flow problems are given

elsewhere [5–7]. Dimensionless partition cotimes used in

Table 1 vary from 0.04 to 0.25 and the absolute errors

vary in magnitude from 4E)15 to 1E)3, which vary

from 3E)14 to 0.01%. It is important to note that the

accuracy is to about 1 part in 1010 for any dimensionless

partition cotime equal to or less than 0.05 in this

example; we frequently use this value for the dimen-

sionless partition cotime. As the cotime becomes smal-

ler, the number of terms in the series increases. Note that

increasing the number of terms from 3 to 7 at x ¼ 0

decreases the errors from about 1.4E)3 to 6.6E)14,
which is about ten orders of magnitude improvement

with a just a doubling in the computations! This extreme

accuracy with only a moderate computational load is a

very attractive feature of these exact solutions with time

partitioning.

The small numbers of terms mentioned above also

exists for each of the double summations for 2D cases or

triple summations for 3D cases.

The one-dimensional transient solution where the left

boundary condition is of a prescribed heat flux and the



Table 1

Results for dimensionless temperature for P ¼ 4 using several dimensional partition cotimes for the steady state case denoted XU21B10

Fop x=L Number of terms T ðx=LÞ=q0L=k Error

0.04 0.0 7 13.3995375083 6.57E)14
0.05 0.0 6 13.3995375083 1.33E)11
0.06 0.0 6 13.3995375088 4.93E)10
0.07 0.0 5 13.3995375150 6.75E)09
0.08 0.0 5 13.3995375577 4.94E)08
0.25 0.0 3 13.4009780223 1.44E)03

0.05 0.5 6 11.8022734836 )3.55E)15
0.08 0.5 5 11.8022734836 7.24E)11
0.1 0.5 4 11.8022734886 5.02E)09
0.12 0.5 4 11.8022735725 8.90E)08
0.25 0.5 3 11.8025046823 2.31E)04

This table shows the error associated with the selection of various cotimes.
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right side is of a prescribed temperature condition, de-

noted XU21B10T0, is given by Eq. (49) with components

from Eqs. (47) and (48). Some numerical values for the

temperature and heat flux are given in Table 2 for P ¼ 1

(no zeroth term present) and in Table 3 for P ¼ 10

(which has a zeroth term, as indicated by the eigenvalues

given in the titles). Notice that the Table 2 cases come to

a steady state condition within a dimensionless time of

about 4 with a value of 0.5 for x=L. The steady state

surface temperature is given as 1.7182818285. The re-

sults in Table 3, for P ¼ 10, are given for a large

dimensionless time in order to reach a steady state in this

case. For the heated surface, the temperature at

dimensionless time 10,000 equals the steady state tem-
Table 2

Dimensionless temperatures and heat fluxes using the short and

long cotime expressions with P ¼ 1

Fo xþ T ðx; tÞ
q0L=k

qðx; tÞ
q0

0.001 0 0.0361854558 1.0000000000

0.01 0 0.1179319248 1.0000000000

0.1 0 0.4097894342 1.0000000000

0.2 0 0.6123851323 1.0000000000

0.4 0 0.9175253431 1.0000000000

1 0 1.4132503381 1.0000000000

2 0 1.6572202925 1.0000000000

4 0 1.7182818285 1.0000000000

0.001 0.5 0.0000000000 0.0000000000

0.01 0.5 0.0000187012 0.0005213862

0.1 0.5 0.0826505020 0.3348179150

0.2 0.5 0.2214341992 0.5657252009

0.4 0.5 0.4538600983 0.8677404431

1 0.5 0.8350106160 1.3512463891

2 0.5 1.0226080950 1.5891724249

4 0.5 1.0695605578 1.6487212707

The first three eigenvalues are: b1 ¼ 1:1655611852,

b2 ¼ 4:6042167772 and b3 ¼ 7:7898837511.
perature to 12 digits. The duration to reach a steady

state is extremely long in comparison to the solution for

P ¼ 0.

Many of the heat fluxes shown in Table 3 are ex-

tremely large for x > 0. At first the values seem physi-

cally unreasonable, going to over 13,000 times the

surface heat flux. Two suggestions are made regarding

this result. First, the solution can be used as a manu-

factured solution for verification purposes. Second, the

solution might possibly lend some insight into the

behavior of turbulent heat transfer as modeled by

surface renewal theory [15].
Table 3

Dimensionless temperatures and heat fluxes for P ¼ 10

Fo xþ T ðx; tÞ
q0L=k

qðx; tÞ
q0

0.01 0 0.17201411 1.0000000000

0.1 0 1.09943616 1.0000000000

1 0 10.08393416 1.0000000000

10 0 97.93266295 1.0000000000

100 0 804.32890105 1.0000000000

1000 0 2179.12596424 1.0000000000

10000 0 2202.54657948 1.0000000000

0.1 0.5 0.61025967 0.9310800731

1 0.5 9.52822942 1.5819725276

10 0.5 96.80856180 7.4652805581

100 0.5 798.63429449 54.7732691585

1000 0.5 2164.53618375 146.8446595284

10000 0.5 2187.80526357 148.4131591026

0.1 0.95 0.13397607 2.1210447835

1 0.95 3.65583214 56.4192513748

10 0.95 38.23568692 589.4630694768

100 0.95 316.29411377 4875.6963823107

1000 0.95 857.45485049 13217.6164731432

10000 0.95 866.67389651 13359.7268296619

The first few eigenvalues are b0 ¼ 4:9995456086, b1 ¼
3:7902223783, b2 ¼ 7:2502483071, b3 ¼ 10:55311042990.
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10. Summary and Conclusions

This paper gives a derivation for exact solutions of

the transient orthotropic heat conduction equation for

solid body flow in a plate, rectangle or parallelepiped.

An objective is to develop a general method for pro-

viding extremely accurate and efficient solutions for

verification of large multi-dimensional computer codes

using finite element, control volume and other related

approximate methods. Two transformations are used to

obtain the standard form of the transient heat conduc-

tion equation which does not contain the flow terms and

is for isotropic bodies. Green’s functions (GFs) are

available for this standard equation.

After developing the transformed equation, bound-

ary and initial conditions, two types of one-dimensional

GFs are used, one comes from the Laplace transform

and the other from separation of variables. The multi-

dimensional GFs are simply formed as a product of the

1D GFs. Each component of the 3D Green’s functions is

a function of u ¼ t � s, for which we propose the name

of ‘‘cotime’’. The Laplace transform-base GFs are used

for the short cotimes and separation of variables-type

are used for the long cotimes. These two forms are of the

GFs are complementary, providing a very efficient

method of solution. Furthermore, use of these two

forms contains an internal verification capability.

The solid body motion changes the eigenvalues for

the long cotime GFs. Moreover, the heat flux boundary

condition introduces a previously unknown zeroth

eigenvalue and function. The paper ends with an

example which contains this eigenvalue.
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Appendix A. Derivation of a short cotime integral for

w : X21 case

Consider the integral

Iw21ða; b; FoÞ ¼
Z Fo

w¼0

1ffiffiffiffiffiffi
pw

p e�a2w�b2
w

�

� ae2aberfc a
ffiffiffiffi
w

p�
þ bffiffiffiffi

w
p

��
dw ðA:1Þ
Using Eq. (12), p. 428 of [5], the first part of Eq. (A.1) is

equal to

I1ða; b; FoÞ ¼
Z Fo

w¼0

1ffiffiffiffiffiffi
pw

p e�a2w�b2
w dw

¼ � 1

2a
e2aberfc a

ffiffiffiffi
w

p��
þ bffiffiffiffi

w
p

�

þ e�2aberfc a
ffiffiffiffi
w

p�
� bffiffiffiffi

w
p

��Fo

0

ðA:2Þ

The second part is [5, Eq. (1), p. 426]

I2ða; b; FoÞ ¼
Z Fo

w¼0

ae2aberfc a
ffiffiffiffi
w

p�
þ bffiffiffiffi

w
p

�
dw

¼
�
�

ffiffiffiffi
w
p

r
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w � 1

4a
e�2ab

	erfc a
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w

p�
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w
p

�
þ aw
�

þ b � 1

4a

�
e2ab

	 erfc a
ffiffiffiffi
w

p�
þ bffiffiffiffi

w
p

��Fo

0

ðA:3Þ

Using these last two equation in Eq. (A.1) and intro-

ducing the limits gives

Iw21ða; b; FoÞ

¼
ffiffiffiffiffi
Fo
p

r
e�a2Fo�b2

Fo � e2aberfc a
ffiffiffiffiffi
Fo

p�
þ bffiffiffiffi

w
p

�
aFo
�

þ bþ 1

4a

�

þ 1

4a
e�2aberfc

�
� a

ffiffiffiffiffi
Fo

p
þ bffiffiffiffi

w
p

�
ðA:4Þ
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